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Abstract
We consider the one-dimensional Ising-like fully anisotropic S = 1/2
Heisenberg antiferromagnetic Hamiltonian and study the dynamics of domain
wall excitations in the presence of a transverse magnetic field hx . We obtain
dynamical spin correlation functions along the magnetic field, Sxx(q, ω), and
perpendicular to it, Syy(q, ω). It is shown that the line shapes of Sxx(q, ω)
and Syy(q, ω) are purely symmetric at the zone boundary. It is observed in
Syy(q, ω) for π/2 < q < π that the spectral weight moves toward the low-
energy side with the increase of hx . This model is applicable to the study of
the spin dynamics of CsCoCl3 in the presence of weak interchain interactions.

1. Introduction

The spin- 1
2 Ising-like antiferromagnetic (AFM) chain has been the subject of theoretical

studies for quite some time. The spin dynamics of the system is characterized by a picture
of propagating domain walls or solitons. The magnetic compounds CsCoCl3 and CsCoBr3

are good examples of S = 1
2 Ising-like AFM chains. The simplest exchange interaction

Hamiltonian describing these compounds is the S = 1
2 XXZ Heisenberg model

HXXZ = 2J
∑
i

[
Szi S

z
i+1 + ε(Sxi S

x
i+1 + S

y

i S
y

i+1)
]

0 < ε < 1. (1)

For very small ε, the lowest-order ground state of equation (1) is the Néel state with a z-
component of the total spin given by SzT = 0. Villain [1] has calculated the longitudinal
correlation function Szz(q, ω) based on the basis states consisting of a single domain wall
and predicted the appearance of a central peak with sharp shoulders. On the other hand,
Ishimura and Shiba [2] proposed a picture of domain wall pair (DWP) states and showed
that the propagating DWPs give rise to an excitation continuum around the Ising excitation
energy 2J . The transverse correlation function Sxx(q, ω) exhibits a broad peak around 2J .
The existence of these peaks of Szz(q, ω) and Sxx(q, ω) has been verified by inelastic neutron

0953-8984/01/225205+16$30.00 © 2001 IOP Publishing Ltd Printed in the UK 5205



5206 A Ghosh

scattering experiments on CsCoCl3 [3–5] and CsCoBr3 [6]. A significant feature of the spin-
wave response of Sxx(q, ω) near the zone centre (q = π ) is that the spectral weights are heavily
concentrated towards the lower-energy region. Nagler et al [6] added a staggered-field term

HS = h
∑
i

(−1)iSzi (2)

to the Hamiltonian in equation (1). The staggered field h has two contributions, h0 and
hic. The first contribution originates from taking account of the exchange mixing of higher
levels with the ground doublet. The second contribution arises from the interchain exchange
interactions at low temperatures. The interchain interactions treated in the mean-field approx-
imation give rise to the staggered-field term hic. The effective Hamiltonian contains both the
terms HXXZ and HS. With this effective Hamiltonian, the broad peak is found to spilt into
discrete peaks which is known as the Zeeman ladder and observed in Raman scattering on
CsCoCl3 and CsCoBr3 [7]. However, the observed line shapes of Sxx(q, ω) are quite different
from those of the theoretical predictions. Matsubara and Inawashiro [8] have included a weak
next-nearest-neighbour (NNN) ferromagnetic (FM) interaction HF in the Hamiltonian HXXZ

in equation (1):

HF = −2J ′ ∑
i

[
Szi S

z
i+2 + ε(Sxi S

x
i+2 + S

y

i S
y

i+2)
]
. (3)

They have shown the existence of bound states of DWPs as well as the free DWP states,
and the transverse correlation function Sxx(q, ω) exhibits a sharp peak in the lower-energy
region.

The effect of a transverse magnetic field hx on the spin dynamics of this model has
been studied by Murao et al [9] who have shown that the spectral weight moves towards
the low-energy side in Syy(q, ω) for π/2 < q < π with the increase in hx , while there is
no appreciable change in Sxx(q, ω) for all q. The distribution of intensities of the sharp
peaks in Syy(q, ω) varies irregularly for q ≈ π . Although the proposed form of NNN
FM coupling provides a good description of most of the experimental results, the required
magnitude of the NNN exchange |J ′| ∼ 0.1|J | is unphysically large [10]. In 1996, Bose
and Ghosh [11] proposed the Ising-like fully anisotropic Heisenberg AFM Hamiltonian in 1D
and showed that the asymmetric line shapes of Sxx(q, ω) and the bound states of DWPs can
be derived.

In the absence of the magnetic field, SzT is a good quantum number and the eigenvalues of
different SzT having unequal numbers of DWPs form different energy bands separated by energy
2J . In the presence of a longitudinal magnetic field, hz, S

z
T is still a good quantum number

and the eigenvalues for the same value of SzT as well as the position of the peak of Sxx(q, ω)
shift parallel with the increase in hz. However, SzT is no longer a good quantum number in
the presence of a transverse magnetic field hx and a mixing of states with different SzT occurs.
Thus, eigenvalues as well as eigenstates will be modified by hx and the characteristics of the
spin dynamics will be different.

In this paper, we study the effect of hx on the dynamical spin correlation functions
in a fully anisotropic Ising-like S = 1

2 Heisenberg AFM chain at low temperatures.
Dynamical correlation functions Sxx(q, ω) and Syy(q, ω) have been derived using the picture
of propagating DWPs. Finally we introduce the use of this model to explain the spin dynamics
of CsCoCl3 taking into account the weak interchain interactions (equation (2)). In section 2,
the theory and the results for the eigenvalues of the DWP continuum and DWP bound states
are derived. The dynamical spin correlation functions of CsCoCl3 are presented in section 3.
Section 4 contains a discussion of the results obtained.
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2. Model and domain wall pair states

The one-dimensional fully anisotropic Ising-like Heisenberg Hamiltonian in the presence of a
transverse magnetic field is given by

H = 2
N∑
i

[
JxS

x
i S

x
i+1 + JyS

y

i S
y

i+1 + JzS
z
i S

z
i+1

] − g⊥µBHx

N∑
i

Sxi

= 2J
N∑
i

[
Szi S

z
i+1 +

ε1

2
(S+

i S
−
i+1 + S−

i S
+
i+1) +

ε2

2
(S+

i S
+
i+1 + S−

i S
−
i+1)

]
− hx

N∑
i

Sxi

(4)

where

J = Jz ε1 = Jx + Jy

2J
ε2 = Jx − Jy

2J
hx = g⊥µBHx ε1, ε2 � 1.

Hx is the transverse magnetic field and we assume that hx � 2J . N is the total number of
spins. Since we are interested in excitations at low temperatures, we consider low-lying excited
states. These states can be obtained from the Néel state by flipping a block of adjacent spins,
giving rise to DWP states with SzT = 0 and ±1 (figure 1). These excitations occur around the
Ising energy 2J above the ground state. Following the method introduced by Murao et al [9],
we classify these states into two series. Series a starts from the state with SzT = 1 where two
domain walls are adjacent. Let m be the number (odd) of sites between two domain walls and
φ
(a)
1 (m) be the corresponding Ising state. The subsequent states φ(a)j (m) (j = 2, 3, 4, . . .) are

generated from φ
(a)
1 (m) such that the separation between the domain walls is increased by unit

lattice distance successively towards the right-hand side of the chain. Hence,

φ
(a)
1 (m) = S+

m|Néel〉 SzT = 1

φ
(a)
j (m) = S−

m+j−1φ
(a)
j−1(m) (j = 2, 4, 6, . . .) SzT = 0

φ
(a)
j (m) = S+

m+j−1φ
(a)
j−1(m) (j = 3, 5, 7, . . .) SzT = 1.

(5)

|Néel〉 is one of the Néel states. We choose a linear combination of these basis states for
describing propagating DWPs with wave vector q as

|j, q〉a =
√

2

N

∑
m=odd

e−iqmφ
(a)
j (m). (6)

On the other hand, series b originates from the state with SzT = −1, and the subsequent states
with SzT = 0 and −1 appear alternately:

φ
(b)
1 (m) = S−

m |Néel〉 SzT = −1

φ
(b)
j (m) = S+

m+j−1φ
(b)
j−1(m) (j = 2, 4, 6, . . .) SzT = 0 (7)

φ
(b)
j (m) = S−

m+j−1φ
(b)
j−1(m) (j = 3, 5, 7, . . .) SzT = −1.

Taking linear combination of these states with wave vector q,

|j, q〉b =
√

2

N

∑
m=even

e−iqmφ
(b)
j (m). (8)
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Figure 1. Néel states and DWP states for SzT = ±1 and 0. The dotted vertical lines indicate the
positions of domain walls.

With the help of equations (5)–(8), one can obtain H |j, q〉a as follows:

H |1, q〉a = 2J |1, q〉a + Vε1 |3, q〉a + Vε2 |1, q〉b − hx

2
(|2, q〉a + e−iq |2, q〉b)

H |2, q〉a = 2J |2, q〉a + Vε1 |4, q〉a − hx

2
(|1, q〉a + |3, q〉a + e−iq |3, q〉b + eiq |1, q〉b)

...

H |j, q〉a = 2J |j, q〉a + Vε1 |j + 2, q〉a + V ∗
ε1
|j − 2, q〉a − hx

2
(|j − 1, q〉a + |j + 1, q〉a)

− hx

2
(eiq |j − 1, q〉b + e−iq |j + 1, q〉b) j � 3

(9)

where

Vε1 = ε1J (1 + e−2iq) and Vε2 = 2ε2J cos q.

In the same manner, one could derive a similar set of equations for H |j, q〉b in terms of |n, q〉a
and |n, q〉b. To avoid the mixing between the states of series a and b, we further introduce
symmetric (α) and antisymmetric (β) functions [9] defined as

|j, q〉α = 1√
2
(|j, q〉a + |j, q〉b)

|j, q〉β = 1√
2
(|j, q〉a − |j, q〉b).

(10)
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Hence, one can express H |j, q〉α as

H |1, q〉α = (2J + Vε2)|1, q〉α + Vε1 |3, q〉α − Vα|2, q〉α
H |2, q〉α = 2J |2, q〉α + Vε1 |4, q〉α − (V ∗

α |1, q〉α + Vα|3, q〉α)
...

H |j, q〉α = 2J |j, q〉α + Vε1 |j + 2, q〉α + V ∗
ε1
|j − 2, q〉α − (V ∗

α |j − 1, q〉α
+ Vα|j + 1, q〉α) j � 3

(11)

where

Vα = hx

2
(1 + e−iq).

Similarly, one can derive H |j, q〉β with α and Vα being replaced by β and

Vβ = hx

2
(1 − e−iq)

respectively. The first excited states can be constructed as a linear combination of symmetric
and antisymmetric functions separately:

!α(q) =
∑
j

αj |j, q〉α and !β(q) =
∑
j

βj |j, q〉β. (12)

With the help of the equation (11), the following equations for the coefficients αj and βj are
obtained:

λαᾱ1 = (2J + Vε2)ᾱ1 + V̄αᾱ2 + V̄ε1 ᾱ3

λαᾱ2 = 2J ᾱ2 + V̄α(ᾱ1 + ᾱ3) + V̄ε1 ᾱ4

...

λαᾱj = 2J ᾱj + V̄α(ᾱj−1 + ᾱj+1) + V̄ε1(ᾱj−2 + ᾱj+2) j � 3

(13)

where λα is the eigenvalue,

V̄ = −hx cos

(
q

2

)

V̄ε1 = 2ε1J cos q

and

ᾱj = αje(iq/2)j .

In the same manner, one can derive similar set of equations for β with α being replaced by β,
V̄α by

V̄β = hx sin

(
q

2

)

and ᾱj by

β̄j = βje(i(k+π)/2)j .

Dispersion relations are obtained numerically by solving equations (13), with N = 1000.
Here, we present the results for ε1 = 0.05 and ε2 = 0.10, since these values are estimated for
the compound CsCoCl3 [11]. Figure 2 shows the dispersion relations in the symmetric and
antisymmetric modes, λα and λβ , respectively, for hx = 0. The spin-wave continuum and the
bound-state energy are plotted as solid and dotted lines, respectively. In the symmetric mode,
the bound-state energy lies above the continuum for q < π/2 and below the continuum for
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Figure 2. The spin-wave excitation continuum (solid lines) and DWP bound-state energies (dotted
lines) of the symmetric and antisymmetric modes for ε1 = 0.05 and ε2 = 0.1.

q > π/2, while the reverse is true for the antisymmetric mode. The bound state does not exist
when ε1 > ε2. When hx �= 0, the energy band extends towards the high-energy region for
0 � q � π/2 in both the symmetric and the antisymmetric modes. The spin-wave excitations
have a width at q = π/2 in contrast with the case for hx = 0. The width also broadens with
the increase of hx . Note that the bound-state energy is not affected by the presence of hx .

3. Dynamical spin correlation functions at T = 0 K

The dynamical spin correlation function along the direction of hx at T = 0 is defined as

Sxx(q, ω) =
∑

e

|〈!e|Sx(q)|!g〉|2δ(ω − λe + λg) (14)

where |!g〉, |!e〉 denote the ground and excited states, respectively, and λg, λe are the
corresponding eigenvalues. In this case, the ground state is one of the Néel states and the
summation extends over the first excited states only. Also

Sx(q) = 1

2
√
N

∑
j

eiqrj (S+
j + S−

j ).

Similarly, the dynamical spin correlation function perpendicular to the direction of hx ,
Syy(q, ω), is defined by replacing the superscript x with y in equation (14), where

Sy(q) = 1

2i
√
N

∑
j

eiqrj (S+
j − S−

j ).

Since the ground state is the Néel state, Sxx(q, ω) and Syy(q, ω) directly reflect the
wavenumber dependence of the excited states.
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With the help of the equation (12), the dynamical spin correlation functions can further
be written as [9]

Sxx(q, ω) = 1

4

∑
α

|α1|2δ(ω − λα + λg)

Syy(q, ω) = 1

4

∑
β

|β1|2δ(ω − λβ + λg).

(15)

Note that Sxx(q, ω) depends only depends on |α1|2 while Syy(q, ω) depends on |β1|2.
Thus, the symmetric mode is directly reflected in Sxx(q, ω), whereas the antisymmetric mode
is reflected in Syy(q, ω). The functions Sxx(q, ω) and Syy(q, ω) for hx = 0 are shown in
figure 3. A sharp peak originates from the bound state, whereas the broad peak originates from
the free DWP states. The intensity of the sharp peak does not depend on the number of spins
N , while the broad peak comprises N − 1 peaks which have intensity of the order of 1/N .
Note that at the zone boundary (q = π/2), the width of the continuum vanishes. This is also
verified in neutron scattering experiments on CsCoCl3 [12].

The line shapes of Sxx(q, ω) at hx = 0.1J have been plotted in figure 4. The main feature
of Sxx(q, ω) induced by hx shows that the line shape is purely symmetric at the zone boundary
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Figure 4. The function Sxx(q, ω) for different values of q and hx = 0.1J . The width of each
histogram is (ω = 0.025J .

and it is highly asymmetric away from the zone boundary. At q ≈ 0, the sharp peak occurs
at high energy and the tail in the lower-energy region. For 0 < q < π/2, the spectral weight
concentrates mainly in the middle of the continuum. The sharp peak emerges again in the
lower-energy region for π/2 < q < π . At q ≈ π , the line shape is not affected by hx as
expected from the dispersion relation shown in figure 2.

Figure 5 shows Syy(q, ω) at hx = 0.1J . The line shape of Syy(q, ω) is again symmetric
at q = π/2. The q-dependence of Syy(q, ω) is opposite to that of Sxx(q, ω) and it remains
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Figure 5. The function Syy(q, ω) for different values of q and hx = 0.1J . The width of each
histogram is (ω = 0.025J .

unaffected at q = 0. For 0 < q < π/2, the sharp peak appears in the lower-energy region
of the broad peak. The sharp peak originates from the bound state, whereas the broad peak
originates from the DWP continuum. For π/2 < q < π , the sharp peak appears on the
higher-energy side of the broad peak and the tail is found to be enhanced towards the lower-
energy region.

In figures 6 and 7, Sxx(q, ω) and Syy(q, ω) are shown for different values of hx ,
respectively. With the increase of hx , the features mentioned above are enhanced. The
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Figure 6. The function Sxx(q, ω) for different values of q and hx . The width of each histogram is
(ω = 0.025J .

height of the sharp peak is found to diminish with the increase of hx . Note that Sxx(q, ω)
for 0 < q < π/2 and Syy(q, ω) for π/2 < q < π are sensitive to hx as observed by Murao
et al [9].

3.1. Interchain interactions in CsCoCl3

Now we add the staggered-field term to the Hamiltonian in equation (5). The full Hamiltonian
looks as follows:

H = 2J
N∑
i

[
Szi S

z
i+1 +

ε1

2
(S+

i S
−
i+1 + S−

i S
+
i+1) +

ε2

2
(S+

i S
+
i+1 + S−

i S
−
i+1)

]

−hx
N∑
i

Sxi − hic

N∑
i

(−1)iSzi . (16)

Here, we further consider that the staggered field hic originates due to the weak interchain
interaction. The interchain interaction has been treated in the mean-field approximation. Thus,

hic = 2J ′ ∑
δ

〈Szi+δ〉 (17)
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Figure 7. The function Syy(q, ω) for different values of q and hx . The width of each histogram is
(ω = 0.025J .

where J ′ is the interchain interaction strength and δ is the nearest neighbour on the ab-plane.
Following the same technique as was developed in section 2, we obtainSxx(q, ω) andSyy(q, ω)
numerically.

In figure 8, Sxx(q, ω) is shown for different values of hic. When hic �= 0, the broad peak of
Sxx(q, ω) has been split into discrete peaks, which are known as the Zeeman ladder [13]. With
the increase of hic, the number of peaks decreases and the separation between them becomes
wider. For π/2 < q < π , the intensity of the peak at the lowest energy is stronger. Several
peaks having nearly the same intensity are observed at q ≈ 0.

Figure 9 shows Syy(q, ω) for different values of hic. For 0 � q � π/2, several strong
peaks appear in the lower-energy region. Note that the differences between Sxx(q, ω) and
Syy(q, ω) are remarkable at q = π . In Syy(q, ω) for q = π , several strong peaks appear
in the higher-energy region and weak peaks in the lower-energy region, and their intensities
vary irregularly with the increase in hic. Thus the combined effect of hx and the interchain
interactions is also found in Sxx(q, ω) and Syy(q, ω) for q � π/2 as reported in reference [9].

In CsCoCl3, the magnetic Co2+ ions are surrounded by trigonally distorted octahedra of
Cl− ions and form chains along the c-axis with successive octahedra sharing a common face.
The CsCl−3 chains are arranged in a triangular array. Since the exchange coupling between
chains is antiferromagnetic, the triangular array forms a frustrated system. Thus there is no
possibility of a perfectly regular AFM ordered state. Two different three-dimensionally ordered
phases occur in CsCoCl3. First, below TN1 ∼ 21 K a partially disordered AFM phase (A) is
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Figure 8. The function Sxx(q, ω) for different values of hic and hx = 0.1J . The width of each
histogram is (ω = 0.025J .

formed in which a third of the chains are paramagnetic. A phase change takes place below
TN2 ∼ 10–14 K, to a ferrimagnetic phase (F), in which the paramagnetic chains align in the
same direction, with the result that two thirds of the chains are aligned in one direction and
one third in the opposite direction (figure 10) [14].

It is obvious from equation (17) that the staggered field hic could take one of the two
possible values hic = 6J ′ and 0. Similarly, in the partially disordered phase, hic takes one of
the four values hic = 6J ′, 4J ′, 2J ′ and 0. The functions Sxx(q, ω) and Syy(q, ω) of CsCoCl3
are obtained by summing those of the individual chains. In the ferrimagnetic phase, the ratio
of the numbers of chains with hic = 6J ′ and 0 is estimated as 1:2. In the partially disordered
phase, the ratio of the numbers of chains with hic = 6J ′, 4J ′, 2J ′ and 0 is estimated as
1:3:3:5 [9]. Figure 11 shows Sxx(q, ω) for q = 0 and Syy(q, ω) for q = π in the ferrimagnetic
phase. The line shape of Sxx(q, ω) is affected strongly by hx . As hx increases, the differences
in intensities among various discrete peaks reduce markedly and the sharp peak disappears.
On the other hand, Syy(q, ω) is affected only slightly by hx . The spectral weight is enhanced
towards the lower-energy region with the increase in hx , and the intensity distribution varies
irregularly. Sxx(q, ω) for q = 0 and Syy(q, ω) for q = π obtained in the partially disordered
phase are shown in figure 12. Sxx(q, ω) is strongly affected by hx while Syy(q, ω) is much
less affected. Sxx(q, ω) for q = π and Syy(q, ω) for q = 0 are not affected by hx in either the
ferrimagnetic or the partially disordered phases.
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Figure 9. The function Syy(q, ω) for different values of hic and hx = 0.1J . The width of each
histogram is (ω = 0.025J .

(a) (b)

Figure 10. Magnetic ordering in the ab-plane below TN1 : (a) ferrimagnetic structure for T < TN2

(F phase); (b) structure for TN2 < T < TN1 (A phase). Chains marked with open circles are
disordered.

4. Discussion of results

We have studied the effect of the transverse magnetic field hx on dynamical properties of the
one-dimensional fully anisotropic Ising-like antiferromagnet at low temperatures. We have
shown using this Hamiltonian that some of the results obtained by Murao et al in [9], where a
FM NNN interaction is assumed besides the usual AFM NN interaction, can be qualitatively
reproduced. These include the formation of DWP bound states, two types of excited mode
which are symmetric and antisymmetric with respect to the states with SzT = 1 and −1 and



5218 A Ghosh

0.31

0.30

0.29

0.31

0

0.05

0.1

0.15

0.2

0.25

1.4 1.6 1.8 2 2.2 2.4 2.6

0

0.05

0.1

0.15

0.2

0.25

1.4 1.6 1.8 2 2.2 2.4 2.6

0

0.05

0.1

0.15

0.2

0.25

1.4 1.6 1.8 2 2.2 2.4 2.6

0

0.05

0.1

0.15

0.2

0.25

1.4 1.6 1.8 2 2.2 2.4 2.6

0

0.05

0.1

0.15

0.2

0.25

1.4 1.6 1.8 2 2.2 2.4 2.6

0

0.05

0.1

0.15

0.2

0.25

1.4 1.6 1.8 2 2.2 2.4 2.6

0

0.05

0.1

0.15

0.2

0.25

1.4 1.6 1.8 2 2.2 2.4 2.6

0

0.05

0.1

0.15

0.2

0.25

1.4 1.6 1.8 2 2.2 2.4 2.6

!

!

!

! !

!

!

!

S
x
x
(q
;!
)

S
x
x
(q
;!
)

S
x
x
(q
;!
)

S
x
x
(q
;!
)

S
y
y
(q
;!
)

S
y
y
(q
;!
)

S
y
y
(q
;!
)

S
y
y
(q
;!
)

q=0

q=0

q=0

q=0 q=�

q=�

q=�

q=�

hx=0:2J
hx=0:2J

hx=0:1J
hx=0:1J

hx=0:05J
hx=0:05J

hx=0hx=0

Figure 11. The function Sxx(q, ω) for q = 0 and Syy(q, ω) for q = π in the ferrimagnetic phase.
The width of each histogram is (ω = 0.025J .

an asymmetry in the line shapes of the correlation functions Sxx(q, ω) and Syy(q, ω). In
order to obtain the asymmetry in the line shapes of Sxx(q, ω) and Syy(q, ω), a FM NNN
exchange of magnitude |J ′| ∼ 0.1|J | is required, which, considering that the NNN exchange
is through two nonmagnetic ligands, would seem to be unphysically large [10]. On the other
hand, our model could explain all of these characteristics with the usual NN AFM exchange
interactions. There are, however, a number of differences. Murao et al [9] observed a single
bound-state branch which is symmetric with respect to the zone boundary, whereas in the
present study, different bound-state branches are obtained for symmetric and antisymmetric
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Figure 12. The function Sxx(q, ω) for q = 0 and Syy(q, ω) for q = π in the partially disordered
phase. The width of each histogram is (ω = 0.025J .

modes which are asymmetric with respect to the zone boundary. No experimental evidence is
as yet available on the effect of bound states on the thermodynamic and dynamic properties
of the compounds CsCoCl3 and CsCoBr3. The symmetric modes contribute to Sxx(q, ω),
whereas antisymmetric modes contribute to Syy(q, ω). Both Sxx(q, ω) and Syy(q, ω) have
symmetry at the zone boundary even in the presence of either (i) both hx and hic or (ii) either
one of them. This symmetry is totally lost away from the zone boundary. This theory is also
valid for analysis of the spin dynamics of CsCoCl3 and CsCoBr3 at finite temperatures, because
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the correlation length of the spin along the chain is very large even in the paramagnetic phase
(T ≈ 21 K). Thus the effects of hx on Sxx(q, ω) and Syy(q, ω) discussed here are yet to be
observed in a real system.

Apart from the relevance to experimental systems such as CsCoCl3 and CsCoBr3, the
present study is intended to provide insights into the spin dynamics of the fully anisotropic
Ising-like AFM system in the presence of a transverse magnetic field hx . The ground-state
energy and low-lying excitation spectrum of the fully anisotropic Hamiltonian are known
exactly because of the mapping between the fully anisotropic Hamiltonian and the exactly
solvable eight-vertex model [15,16]. Our calculations provide us with some physical insights
into the spin dynamics in an Ising-like fully anisotropic AFM system in the presence of a
transverse magnetic field.
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